Datashare 175

Hypogenic karstic cavities formed by tectonic-driven fluid mixing in the Ordovician carbonates from the Tarim Basin, northwestern China

Lei Jiang, Anjiang Shen, Zhanfeng Qiao, Anping Hu, Zhaohui Xu, Heng Zhang, Bo Wan, and **Chunfang Cai**

AAPG Bulletin, v. 108, no. 1 (January 2024), pp. 159-178 Copyright ©2024. The American Association of Petroleum Geologists. All rights reserved.

Table S1.	The δ^{13} C, δ^{18} O Isotopic Values and 87 Sr/ 86 Sr
Ratios of Ca	bonates from the Ordovician of the Tarim Basin,
Northwester	n China

Table S1. Continued

Area

Area	Sample Number	δ^{13} C‰	δ ¹⁸ 0‰	⁸⁷ Sr/ ⁸⁶ Sr	Ta Ta
Outcrop	Outcrop-1	-0.84	-14.86	0.709286	Ta
•	Outcrop-2	-1.61	-7.49	0.7088	Ta
	Outcrop-3	-1.49	-7.65	0.7089	Ta
	Outcrop-4	2.49	-16.57	0.709249	Ta
	Outcrop-5	0.82	-13.79	0.709462	Ta
	Outcrop-6	-1.86	-10.5	0.708985	Ta
	Outcrop-7	-7.11	-14.14	0.7092	Ta
	Outcrop-8	-1.75	-10.32	0.70926	Ta
	Outcrop-9	-0.8	-8.28	0.709171	Ta
	Outcrop-10	-2.29	-11.37	0.709083	Ta
	Outcrop-11	-1.66	-16.13	0.7103	Ta
	Outcrop-12	-2.32	-17.39	0.7104	Ta
	Outcrop-13	-2.72	-14.99	0.7095	Ta
	Outcrop-14	-2.66	-15.5	0.7096	Ta
	Outcrop-15	-4.98	-13.3	0.7099	Ta
	Outcrop-16	0.63	-5.41	_	Ta
	Outcrop-17	0.66	-7.65	-	Ta
	Outcrop-18	-0.76	-7.98	0.708824	Ta
	Outcrop-19	-1.37	-8.33	0.709231	Ta
	Outcrop-20	-0.88	-8.3	0.70984	Ta
Tazhong	Tazhong-21	-7	-10.28	-	Ta
-	Tazhong-22	-6.65	-8.95	0.70932	Ta
	Tazhong-23	-5.93	-6.17	_	Ta
	Tazhong-24	-4.81	-5.29	0.7092	Ta
	Tazhong-25	-9.21	-6.995	-	Ta
	Tazhong-26	-8.12	-8.64	0.70945	Ta
	Tazhong-27	-3.88	-11.07	0.70975	Ta
	Tazhong-28	-2.53	-14.84	_	Ta
	Tazhong-29	-1.02	-8.02	0.70901	Ta
	Tazhong-30	-2.66	-6.99	0.70991	Ta
	Tazhong-31	1.49	-7.59	0.70805	Ta
	Tazhong-32	1.23	-6.91	0.70805	Ta
	Tazhong-33	-0.79	-7.56	_	Ta
	Tazhong-34	-0.66	-7.33	0.70832	Ta
			(continued)	

Sample Number	δ ¹³ C‰	δ^{18} 0‰	⁸⁷ Sr/ ⁸⁶ Sr
Tazhong-35	1.29	-6.83	0.70809
Tazhong-36	2.5	-7.09	0.70818
Tazhong-37	0.44	-6.72	0.70883
Tazhong-38	-1.41	-6.39	0.70878
Tazhong-39	1.64	-7.48	0.70815
Tazhong-40	-0.82	-8.93	0.70823
Tazhong-41	-0.56	-8.67	-
Tazhong-42	0.97	-7.04	0.70922
Tazhong-43	-1.49	-7.22	0.70897
Tazhong-44	-2.67	-7.45	-
Tazhong-45	0.29	-7.02	0.70877
Tazhong-46	-0.03	-8.43	0.70879
Tazhong-47	-1.09	-10.48	0.70904
Tazhong-48	0.72	-8.83	-
Tazhong-49	-1.05	-10.54	0.7091
Tazhong-50	1.23	-8.03	0.70839
Tazhong-51	0.56	-8.03	-
Tazhong-52	0.1	-8.16	0.70921
Tazhong-53	0.5	-10.29	0.70877
Tazhong-54	0.54	-9.65	-
Tazhong-55	-1	-8.92	0.70917
Tazhong-56	-1.4	-8.72	0.70901
Tazhong-57	0.21	-8.97	0.70897
Tazhong-58	-2.42	-10.87	-
Tazhong-59	-2.79	-8.94	-
Tazhong-60	-2.66	-13.17	0.70963
Tazhong-61	-5.87	-7.66	-
Tazhong-62	-5.69	-9.42	-
Tazhong-63	-3	-10.91	0.70992
Tazhong-64	-2.74	-7.93	0.70944
Tazhong-65	-2.48	-12.37	0.70957
Tazhong-66	-6.86	-10.32	-
Tazhong-67	-7.23	-9.11	-
Tazhong-68	-0.872	-8.562	-
Tazhong-69	0.571	-8.642	-
Tazhong-70	-1.375	-8.083	-

(continued)

Table S1. Continued

Table S1. Continued

Area	Sample Number	δ ¹³ C‰	δ^{18} O‰	⁸⁷ Sr/ ⁸⁶ Sr	Area	Sample Number	δ ¹³ C‰	δ^{18} 0‰	⁸⁷ Sr/ ⁸⁶ Sr
	Tazhong-71	-1.358	-8.046	_		Tahe-122	2.46	-11.74	_
	Tazhong-72	1.129	-5.777	-		Tahe-123	2.42	-7.86	-
	Tazhong-73	1.075	-8.436	-		Tahe-124	2.15	-9.71	-
	Tazhong-74	-0.025	-13.725	-		Tahe-125	1.7	-6.73	0.708291
	Tazhong-75	3.945	-5.243	-		Tahe-126	0.48	-11.05	0.708844
	Tazhong-76	0.294	-9.016	-		Tahe-127	1.68	-6.79	0.707967
	Tazhong-77	0.868	-8.827	-		Tahe-128	1.32	-7.59	-
	Tazhong-78	0.207	-9.679	-		Tahe-129	0.5	-6.4	0.709248
	Tazhong-79	1.269	-5.452	-		Tahe-130	-8.25	-12.66	-
	Tazhong-80	-2.713	-9.383	_		Tahe-131	-0.837	-9.48	_
	Tazhong-81	-2.494	-8.299	_		Tahe-132	-2.27	-9.824	_
	Tazhong-82	2.382	-7.759	_		Tahe-133	-1.815	-16.82	_
	Tazhong-83	-3.146	-6.903	_		Tahe-134	-1.577	-9.401	_
	Tazhong-84	-3.882	-11.068	_		Tahe-135	-2.955	-12.279	_
Tahe	Tahe-85	-3.14	-12.89	_		Tahe-136	-1.039	-8.312	_
	Tahe-86	-2.78	-12.91	_		Tahe-137	-1.291	-11.619	_
	Tahe-87	-1.88	-11.64	_		Tahe-138	-4.261	-14.168	_
	Tahe-88	-1.58	-11.09	_		Tahe-139	-3.213	-12.771	_
	Tahe-89	-3.19	-12.09	_		Tahe-140	-3.212	-13.444	_
	Tahe-90	-1.56	-7.23	_		Tahe-141	-5 36	-14 91	_
	Tahe-91	-2.82	-11 19	_		Tahe-142	-1.83	-11 222	_
	Tahe-92	-4.62	-12.46	_		Tahe-143	-1.28	-5 135	_
	Tahe-93	_59	-10.73	_		Tahe-144	_4 048	_10 884	_
	Tahe-94	-5.47	-10.55	_		Tahe-145	-3 047	-8.097	_
	Tahe-95	-5.62	_10.93	_		Tabe-146	_2 004	_5 318	_
	Tahe-96	_0.39	_7 34	_		Tahe-147	0.885	-6.809	_
	Tahe-97	_2 23	_21 21	_	Shunnan	Shunnan-148	0.005	-6 58	0 70875
	Tahe-98	_2.25	_21.21	_	Shannan	Shunnan-149	0.15	-6.67	0.70075
	Tahe-99	_2.17	_14.01	_		Shunnan-150	0.40	_4.6	_
	Tabe-100	_2.05	_14.51	0 709525		Shunnan-151	0.20	_7 32	_
	Tabe-101	2.07	-14.46	0.705525		Shunnan-157	0.20	-5.82	_
	Tabe-107	-2.20	-15.02	0.709545		Shunnan-153	0.22	-5.73	
	Tabe-103	-1.41	-1/ 20	0.709002		Shunnan-15/	_0.02		
	Tabe-10/	-2.52	-14.29	0.709009		Shunnan-155	0.02	-7.24	
	Tabe-105	0.00	12 20	0.709504		Shunnan-156	0.00	-0.51	0 7090
	Tabe-106	0.00	12.29	0.709552		Shunnan-157	0.24	0.16	0.7005
	Tabe-107	_2.01	-12.40 -1/1.7	0.705542		Shunnan-158	0.24	0_07	
	Tabe-109	-2.01	-14.7			Shunnan-150	0.24	- 9.97	0 70011
	Tabe 100	-1.90	-14.71	_		Shunnan 160	-2.22	0.61	0.70911
	Tabe 110	-1.97	-14.11	-		Shunnan 161	-2.22	-9.01	0.70915
	Tabe 111	-1.49	-13.0	_		Shunnan 162	-2.10	-12.49	0.70917
		-0.99	-13.91	_		Shunnan 167	-0.44	-10.91	0.7097
	Tabe 117	-1.21	-13.9	- 0 700467		Shunnan 164	-2.40	-13.20	0.70097
	Table 113	-1.14	-10.29	0.709403		Shunnan 105	-1.90	-10.05	0.70950
	Tabe 115	0.41	-0./	0.709330		Shunnan 100	-1.02	-11.09	0.70972
	Tabe 110	2.1Z	-11.15	-	Ualahatar -	Julillail-100	-1.93	- 10.00	0.70949
	Idile-110	2.35	-9.41	_	naianatang	Halahatana 100	-3./9	-13.1/	-
	Idile-117	0.75	-/.4/	-		Halabatang 168	-0.4/	-11./4	-
	Tane-118	5.2	-0.44	0.709003		Halahatang-169	-5.44	-13.13	-
	Tane-119	2.47	-10.93	-		Halahatang-170	-5.81	-11.92	-
	Tane-120	3.02	-/.89	0.70935		Halanatang-1/1	1.16	-5.8	-
	Tane-121	5.54	-9.61	_		nalanatang-172	-0.31	-14.54	_
			(continued)				((continued)

Area	Sample Number	δ ¹³ C‰	δ ¹⁸ 0‰	⁸⁷ Sr/ ⁸⁶ Sr
	Halahatang-173	-0.42	-14.71	_
	Halahatang-174	-3.25	-13.08	_
	Halahatang-175	1.59	-10.19	_
	Halahatang-176	-2.01	-11.33	_
	Halahatang-177	0.06	-15.71	_
	Halahatang-178	-1.92	-9.25	_
	Halahatang-179	-1.63	-12.25	_
	Halahatang-180	-4.09	-12.71	_
	Halahatang-181	-1.34	-8.61	_
	Halahatang-182	-0.59	-9.54	_
	Halahatang-183	-0.32	-13.51	_
	Halahatang-184	-1.35	-14.26	_
	Halahatang-185	0.34	-13.92	_
	Halahatang-186	1.98	-4.51	_
	Halahatang-187	-3.12	-10.25	_
	Halahatang-188	2.12	-6.51	_
	Halahatang-189	-0.52	-7.57	_
	Halahatang-190	-0.78	-6.37	_
	Halahatang-191	-0.86	-6.91	_
	Halahatang-192	0.12	-8.63	-
	Halahatang-193	0.27	-7.38	-
	Halahatang-194	0.12	-6.04	-

Table S1. Continued

The δ^{13} C, δ^{18} O isotopic values and 87 Sr/ 86 Sr ratios of various types of diagenetic carbonates in the Ordovician reservoirs at different oil fields and outcrops are mainly compiled from the previous studies (i.e., Jia et al., 2015, 2016; Jiang et al., 2015; Lu et al., 2017; Baqués et al., 2020; Zhang et al., 2023).

Abbreviation: - = data not measured or unavailable.

Table S2. Paired δ^{13} C and δ^{18} O Compositions, Measured Δ_{47} and Converted to Temperatures, and Calculated Fluid δ^{18} O Values for Cave- and Fracture-Filling Carbonates from the Ordovician of the Tarim Basin, Northwestern China

Sample	Mineral	δ ¹³ C‰	δ^{18} O‰	Δ_{47}	<i>T</i> , °C	¹⁸ 0-H ₂ O, VSMOW
H1	Cave calcite	-3.524	-12.862	0.557	84	-0.6
H6	Fracture calcite	-3.104	-12.909	0.558	83	-0.7
H601-1	Fracture calcite	0.426	-8.822	0.58	70.8	1.6
ZG518	Vug calcite	0.31	-10.78	0.481	138.8	8.3
TZ12	Fracture calcite	-1.293	-8.041	0.524	104.9	7.1
TZ122	Vug calcite	1.198	-8.62	0.53	101	6
TZ166	Fracture calcite	-11.639	-9.899	0.55	87.9	3
TZ721	Fracture calcite	1.059	-8.401	0.515	111.4	7.6
TZ721-8H	Vug calcite	1.063	-7.662	0.546	90.6	5.6
TZ70	Fracture calcite	-0.197	-9.398	0.545	91.2	4
ZG9	Dolomite	0.937	-7.043	0.457	97.8	4.4
GC4	Dolomite	-0.548	-10.162	0.559	62.8	-3.6
DH12	Dolomite	-0.852	-6.36	0.583	55.9	-0.9
TZ243	Dolomite	-1.004	-8.495	0.394	126.1	6
GC8	Dolomite	-1.224	-7.977	0.372	137.8	7.6

Abbreviations: Δ_{47} = clumped CO₂ isotope; T = temperature; VSMOW = Vienna standard mean ocean water.

REFERENCES CITED

- Baques, V., E. Ukar, S. E. Laubach, S. R. Forstner, and A. Fall, 2020, Fracture, dissolution, and cementation events in Ordovician carbonate reservoirs, Tarim Basin, NW China: Geofluids, v. 2020, 9037429, 28 p., doi:10.1155/ 2020/9037429.
- Jia, L., C. Cai, L. Jiang, K. Zhang, H. Li, and W. Zhang, 2016, Petrological and geochemical constraints on diagenesis and deep burial dissolution of the Ordovician carbonate reservoirs in the Tazhong area, Tarim Basin, NW China: Marine and Petroleum Geology, v. 78, p. 271–290, doi: 10.1016/j.marpetgeo.2016.09.031.
- Jia, L., C. Cai, H. Yang, H. Li, T. Wang, B. Zhang, L. Jiang, and X. Tao, 2015, Thermochemical and bacterial sulfate reduction in the Cambrian and Lower Ordovician carbonates in the Tazhong area, Tarim Basin, NW China: Evidence from fluid inclusions, C, S, and Sr isotopic data:

Geofluids, v. 15, no. 3, p. 421–437, doi:10.1111/gfl. 12105.

- Jiang, L.,W. Pan, C. Cai, L. Jia, L. Pan, T.Wang, H. Li, S. Chen, and Y. Chen, 2015, Fluid mixing induced by hydrothermal activity in the Ordovician carbonates in Tarim Basin, China: Geofluids, v. 15, no. 3, p. 483–498, doi:10.1111/gfl.12125.
- Lu, Z., H. Chen, H. Qing, G. Chi, Q. Chen, D. You, H. Yin, and S. Zhang, 2017, Petrography, fluid inclusion and isotope studies in Ordovician carbonate reservoirs in the Shunnan area, Tarim Basin, NW China: Implications for the nature and timing of silicification: Sedimentary Geology, v. 359, p. 29–43, doi:10.1016/j.sedgeo.2017. 08.002.
- Zhang, H., Z. Cai, F. Hao,W. Hu, X. Lu, and Y.Wang, 2023, Hypogenic origin of paleocaves in the Ordovician carbonates of the southern Tahe oilfield, Tarim basin, northwest China: Geoenergy Science and Engineering, v. 225, 211669, 18 p., doi:10.1016/j.geoen.2023.211669.